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Progress Report

CHAOTIC DYNAMICS OF THE SOLAR CYCLE

November 1993

A key mechanism in our modeling of the complicated temporal behavior of
the solar cycle is on/off intervinttency. In this phenomenon, seen clearly in a
model dynamical system devised some years ago,' activity is interrupted unpre-
dictably by periods of stasis, as in the Maunder minimum, a seventy-five year
halt in solar activity, which took place in tbe time of Newton. Our analysis of
this process, 2 suggests that, when this mechanism acts, it is all but impossi-
ble to determine the dimensions of the solar "attractor" from the observations.
Though it had been previously concluded that .the presently available data are
inadequate for this purpose,3 we are now suggesting a stronger conclusion: no
matter how many data are acquired, the dimension of the attractor of the so-
lar. cycle is indeterminable if on/off intermittency is operative. Therefore, to
understand the solar cycle on the basis of observations, we must work around
this indeterminacy by suitable modeling. (Incidentally, we were led in these
discussions to explore further the quantification of chaos.4 ) At the same time,
on/off intermittency provides a simple explanation of the Maunder minimum
and similar lapses in solar activity that are believed to have occurred in the
past.

We have developed a dynamical model of the solar activity cycle that in-
corporates this chaotic process to provide a fair representation of the solar time
dependence. 5,6 However, this model does not include the spatio-temporal dy-
namics of the solar cycle. This aspect of the cycle is revealed in the Maunder
butterfly diagram, a representation of the principal latitudes of solar activity as
a function of time. From it, we see that solar activity is confined in a latitude
band that drifts slowly from midlatitudes to the equator over the eleven-year
cycle. Our present immediate aim is to generalize our dynamical model to be
able to describe the spatio-temporal dynamics at the same level with which we
were able to mimic the purely temporal dynamics.

Our first attempts at this generalization have already been reported. We
proposed that the butterfly diagram represents the motion of acitivity waves o
which are very stable nonlinear solitary waves.' Such waves are driven by an
instability just under the convection zone in a layer we have called the tachocline ............................
To understand the remarkable tendency of the solitary waves to drift to the
equator, we have had to make allowance for the latitudinal variation of the ................
tachocline with solar latitude. On building this idea into the basic equation for
an unstable nonlinear wave - the Ginzburg-Landau equation - we found some ty Codes
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encouraging results. In the work just cited, we used asymptotic methods to find
the equations of motion of a single solitary wave in one hemisphere. We found
that indeed the wave proceeded in a stately manner to the equator only to race
back to midlatitude at nearly zero amplitude. Only the slow trip to the equator
would be detected. So we do have the makings of the right spatio-temporal
dynamics in this approach.

These notions are outlined in the summary of lectures at the Isaac Newton
Institute, Cambridge.6 However, the results reported there are for but one wave
in one of the solar hemispheres. We were able to derive an equation of motion
for this wave which describes its motion and amplitude. This year we have been
at work to derive comparably complete results for two such waves, one in each
hemisphere. In fact, this is a much more subtle problem since it requires an
understanding of the way the waves of activity in the two hemispheres interact.
With M. Proctor, we have constructed some preliminary results and they are
encouraging. Not only has the behavior become chaotic in the two hemispheres,
but there is a north-south asymmetry reminiscent of what is seen on the sun.
However, our modeling of the coupling of the two hemispheres has been heuristic;
we were trying to see if we were going in the right direction. The positive outcome
of this trial has led us to focus on the mathematical issue of the nonlinear action
of solitary waves.8 We have also begun to introduce the on/off intermittency into
the spatio-temporal models. We hope to be able to bring our model butterfly
diagram to the same level of agreement as that of our purely temporal theory.

We have also been working on a number of projects in support of the model.
A crucial feature of the spatio-temporal theory is the latitudinal variation of the
properties of the tachocline and these have been fed into the basic Ginzburg-
Landau equation by hand for exploratory purposes. Since this is looking satis-
factory, we have begun to derive this inhomogenous Ginzburg-Landau equation
from first principles. Alex Casti, a student on our AASERT grant, has taken
an interest in this project. To proceed, we require a deeper knowledge of the
structure of the tachocline, which neither the observations nor our preliminary
theory9' 1 ° can provide reliably. We are now working to refine the theory in dis-
cussions with J. Pedlosky, an expert in geophysical fluid dynamics. This work
is in the early stages so we defer elaboration to our next report.

These studies are specific to the solar cycle and we have also been working
on the basic theoretical issues that are involved. In particular, we have been
very much involved in developing a new approach to dynamo theory based on
theoretical techniques developed in chaos theory called the thermodynamic for-
malism. As yet, we have worked only on the kinematic dynamo problem.' In
this problem one asks whether a specified flow field can enhance a seed magnetic
field. To study this we need to find the periodic particle orbits on the specified
flow. In certain cases, this is a byproduct of our study of interacting solitary
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waves.8 The periodic orbits are used to partition the space in which the dynamo
action is to occur and, by giving a suitable weight to each orbit, wc can con-
struct a partition function somewhat analogous to that of statistical mechanics,
as others have shown. Having cut our teeth on the kinematic problem, we are
now beginning to look for a way to attack the more difficult dynamic problem.

Another direction of generalization has been the study of possible sources of
activity in other stars. The sun is one of many types of rotating, turbulent stars
and its understanding is a part of the general theory of such objects. Zahn has
developed a description of the mixing in rotating stars, in which the meridional
circulation plays a major role. This circulation advects angular momentum and
therefore keeps modifying the rotation profile. If the turbulence generated by the
differential rotation is highly anisotropic, with much stronger diffusivity in the
horizontal than in the vertical direction, it becomes possible to produce approx-
imate solutions to this problem.12-1 6 Also Zahn, with B. Chaboyer, has found
that the advection of chemicals by the meridional flow is somewhat inhibited by
such an anisotropic turbulence, so that the mixing becomes a diffusive process.
The formalism is being implemented in a stellar evolution code with Zahn's stu-
dent, Jose Matias (who was a visitor to the project from Toulouse Observatory).
In late-type stars, like the sun, the loss of angular momentum through a wind
drives the meridional circulation and is responsible for the mixing.
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THE CHAOTIC SOLAR CYCLE

E. A. Spiegel
Astronomy Department, Columbia University

New York 10027

1. Preface

Almost 400 hundred yers ago Galileo noticed that the period of a pendulum is the
same for all small amplitudes. Not long afterwards, Galileo and his contemporaries (See
Figure 1) proved that sunspots really were on the sun. So the same person was involved in
discovering the paradigm of periodicity and establishing an exemplar of irregularity. But
just how irregularly do sunspots behave? In modern terms, this question comes down to
asking how many degrees of freedom are involved in the phenomenon. If the mechanism I
am going to describe here, on/off intermittency, is operative, this question is not likely
to be answerable (Platt et al., 1993a).

That I should begin this discussion by mentioning aperiodicity so prominently is a
sign of where we are in the long saga sunspot studies. Shortly after Galileo made his
discovery and lost his travel grant, serious work on sunspots got under way. This was
somewhat disappointing for a time because sunspots had become quite scarce, with only
a few per year being detected. This intermission in solar activity lasted approximately
throughout the life of Newton, being most extreme when he was in his prime and ending
about a decade before his death (Eddy, 1978). So the question of the changing level of solar
activity must have been much on astronomers' minds at that time. By the time this puzzle
was fading from memory, a new issue was raised in the middle of the nineteenth century,
when it was noticed that the level of solar activity (as judged mainly by sunspots) was
found to vary with some regularity. The variation was taken to be periodic with a ten-year
period on (at first) insubstantial evidence, perhaps because the assumption of periodicity
came naturally to those indoctrinated with the behaviour of the pendulum. This variation
must have been one motivation for the careful recording of sunspot (or Wolf) numbers in
Zurich for the last hundred years. In any case, it quickly must have become clear that the
sunspot number was not varying periodically but, as someone wisely put it, cyclically, with
a time scale of eleven years. Thus the main eras of sunspot studies, when one wondered
why the spots had all but disappeared, when one wondered why they behaved periodically,
up till now, when we wonder why they do not behave periodically.

The variation of the annual sunspot number with time over the past two centuries is
shown in Figure 2. It is natural to look for an oscillator driving this phenomenon and to
ask how many degrees of freedom are represented in the mechanism. I shall argue here
that we can model the process as a relatively simple dynamical system that has both the
desired cyclic character and the strong intermittency revealed in the so-called Maunder
minimulm that occurred in Newton's time. Perhaps, from such a mathematical model,
we can attempt to read something of the physical nature of the process itself. This is
not the usual direction of astrophysical research, which begins by trying to isolate the
physical mechanisms behind observed processes. In trying to proceed in terms of a generic
mathematical description, I am illustrating the approach of what I call astromathematics.
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However, both approaches have been used in getting to the model described here so that
a certain amount of physical background is given. The end product is a set of equations
whose output looks like the observed variation of the sunspot number. Nevertheless, I
have had to forgo calling this "an astromathematician's apology" since I have not strictly
followed the rules of the game and for more obvious reasons.

For those who like to read only introductions, let me say here that the proposed
mathematical model has two essential ingredients. First, it contains a simple oscillator.
More importantly, it exhibits on/off intermittency, which is what fluid dynamicists call
intermittency. That is, the model exhibits extended periods with little activity. This is
built into the mathematics by arranging for the equations to admit an invariant manifold
within which the system does not exhibit the behavior that will be called activity. The
manifold has both stable directions along which the system is occasionally drawn into its
neighborhood for extended periods and unstable directions in which it flies out again to
resume the large oscillations that here represent the solar cycle. One can make several ver-
sions of this process, differing in detail, but what I am after here is the isolation of specific
mathematical mechanisms that may be incorporated in such models so as to capture the
main temporal features of the global solar cycle (Platt et al., 1993b). Such models can
also be made spatio-temporal, and this task is now under way.

2. The Solar Tachocline

At any stage of the solar cycle, sunspots are concentrated in a particular band of
latitude whose location drifts toward the equator as the cycle progresses, beginning at
±400 and decreasing to ±5° in the course of eleven years. By the time a given cycle is
ending at ±50, the next one has already begun to appear. Of course, it is not the individual
spots themselves that move toward the equator, for spots rarely last more than a month or
so. This progression in latitude gives the impression that there is solitary wave of activity
whose propagation time is eleven years. The nature of such waves and their fate when
they meet at the equator ar questions that I will address presently.

Why should the spots not appear all over the place, given that they are appearing at
all? The confinement in latitude is a hint that the activity might originate in a physically
distinct layer and the wave-like motion of the locale is suggestive of the influence of a wave
guide whose thickness reflects the width of the activity zone. One such layer might be the
convection zone itself, whose thickness, 1RO, is not all that much greater than the width of
the band of sunspot activity. However, the strong spots have fields of several kilogauss. At
fields well below this, magnetic tubes will have lowered density inside them and be buoyed
up to the surface. Too quickly, perhaps, to have time to develop the necessary strong
fields, unless, as Brandenburg and Tuominen (1991) suggest, there is sufficiently strong
downwelling in compressible convection, to overcome the effects of magnetic buoyancy. In
that case, the lower convection zone might serve as the seat of solar activity (DeLucca,
1986). The prospect of a more favorable site still appeals and it seems natural to seek the
origin of solar activity elsewhere as many have done (for example, Layzer et al., 1979).

The kind of layer we seek layer mediates the transition between the differential rotation
of the solar convection zone and the rotation of the bulk of the sun, or radiative interior.
The existence of such a layer was discussed twenty years ago (Spiegel, 1972) but its reality
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became a serious possibility when helioseismologists were able to infer the distribution of
the solar differential rotation well into the sun (Brown et at., 1989, Goode et at., 1991).
According to them, the variation of rotational velocity with latitude that is seen on the solar
surface continues with little change through the solar convection zone. Throughout the
convection zone, the equator turns faster than the poles with a velocity that is constant on
cones. I will take this motion in the convection zone as specified, much as oceanographers
take the wind stress on the surface of sea as prescribed, though I am sure we are both
somewhat in error. Of course, oceanographers allow for time dependence of the wind stress,
but helioseismology is not old enough to give us accurately the corresponding variability
for the large scale flow of the solar convection zone. Even the picture of constancy on
cones remains tentative as Balmforth and Cough have both reminded me.

The inside of the sun turns rigidly, at least down to depths at which acoustic sounding
works. And between these two regimes there is an unresolved transition that is reminiscent
of the thermal transition layer between the earth's atmosphere and the deep ocean. In fact,
it is perhaps even more like the layers in planetary atmospheres that produce lively activity
and are called weather layers. At least, I am claiming that this transition layer produces the
magnetic weather in the sun called solar activity. This analogy to geophysical layers like
the oceanic thermocline prompts a name like tachocline for the solar rotational transition
layer (Spiegel and Zahn, 1992).

Even now that the tachocline has been detected, it is not obvious why it is there.
We may reasonably assume that the stresses exerted by the differential rotation of the
convection zone on the interior will produce effects in the stable layers. But the implied
turbulent spindown might spread the effects well into the interior and not leave a well-
defined layer. However, strongly anisotropic turbulent stresses that arise in a horizontal
shear, alter this conclusion, as would strong horizontal magnetic stresses. To show how
this works, in the case of the former, let me give an equationless summary of our estimate
of the tachocline thickness on the assumption of a steady tachocline.

If we take the rotational flow in the convection zone as given, its mismatch to the
interior rotation will cause a large scale convective pumping process that drives a vertical
velocity, w, just below the convection zone (Bretherton and Spiegel, 1968). This will
generate a meridional current with north-south component

Ru-. iW (2.1)

with vertical extent I. Strictly, a density gradient term is needed, but this is not important
as long as I is less that the density scale height, which is rather large in the tachocline.

We need to balance the the Coriolis force caused by the north-south motion. If we do
this with eddy viscosity operating on the azimuthal flow, v, we have

fl tH)V (2.2)

where vH is the eddy viscosity of the horizontal turbulence. We have included only horizon-
tal turbulent stresses since they may be expected to dominate in a medium with strongly
stable vertical stratification (Zahn, 1975).
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The azimuthal flow will also produce a Coriolis force and we need a north-south
pressure head to balance it:

,AP (2.3)

We are assuming that the scale of variation in latitude is of the order of the solar radius.
The pressure perturbation has a vertical derivative which is hydrostatically balance&

Ap gpAT
-I ~ ~ T (2.4)

where signs are ignored.
Once we bring in the temperature perturbation, we need to worry about maintaining

it and that requires advection of heat to balance radiative diffusion:

do - t,- &T, (2.5)

where r is the thermal diffusivity and 8 is the vertical, unperturbed potential temperature
gradient (that is, the entropy gradient in some units). Since we are in the radiative zone,
r. is the radiative diffusivity, and the contribution by turbulence is small.

The condition that these balances should be mutually compatible is

4

t'ss (2.6)

where the horizontal eddy time, rH, is P4/VH and T'ES = (NR,) 2/(pcj 2 ) is the Eddington-
Sweet time. If the theory is carried out with an isotropic turbulent stress tensor, spin
down spreads the effects vertically and the tachocline thickens inexorably. But as long as
the stable vertical stratification favors a strong horizontal turbulence, we can maintain a
thin tachocline, though there will be some verical spreading from the initial mismatch, or
from any time dependent forcing.

A thin tachocline with horizontal turbulence will engender the coherent structures -
vortices and flux tubes - that are between the lines of this discussion. On the other hand,
(2.6) does not stand by itself as we know neither I nor PH, but the observations ought to
tell us the former before long. For now, we may note that the value of I does not depend
sensitively on the details of the flow in the convection layer and requires only that there
be a mismatch between that flow and that of the deep interior. Then t - 20, 000(r/vIH)I
km. Although a similar story might be made with magnetic stresses, the eddy viscosity
approach leads to the rough qualitative agreement between the empirical isorotation curves
(Morrow, 1988) and the theoretical ones (Spiegel and Zahn, 1992) shown in Figure 3.

3. The Solar Oscillator

In the analogy between the solar tachoclhne and the oceanic thermocline, the solar
convection zone is like the earth's atmosphere and the solar interior is the abyssal ocean.
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Instead of rain we have plumes twisting downward through the convection zone, dragging
down (and perhaps enhancing) magnetic fields. Such thermals are known in experimental
convection and in the earth's atmosphere. Simulations of highly stratified convection shows
that the descending plumes are frequent, but there are no comparable rising plumes. In the
simulations reported by Brandenburg and Tuominen (1990) downwelling brings magnetic
fields to the depths of the convection zone with a vigour that may overcome the opposing
tendencies of magnetic buoyancy.

The descending matter, with its trapped magnetic field, will be entrained by the
turbulent motions in the tachocline where it is sheared out to build up a toroidal component
over long times. How extensive this reservoir is, or how it is structured, are questions
that have troubled me for a long time. Other issues like the structure at high latitudes
and the effects of the meridional circulations are also worrisome, since they may bear on
observational details. To get to the mathematical model we do not need to answer these
questions, but they must be faced some day. For now I will simply assume that the toroidal
field is there in the tachocline in describing the scenario that S. Meacham and I have been
trying to develop over the past few summers in Woods Hole for feeding this field into the
convection zone to maintain some kind of balance and, incidentally, to produce spots in
the process.

If the tachocline is like an atmospheric weather layer, such as the oceanic thermocline,
we must expect it to develop vortices, as does every such layer we can observe well (Dowling
and Spiegel, 1990). These vortices will have more or less vertical axes and, when a toroidal
magnetic filament impinges on one, it will wind the field up. If the process were confined
to the tachocline, we might expect flux expulsion from the vortex (Parker, 1979, Chap.
16). But the local strengthening of the field produces magnetic buoyancy that will lift the
field-containing region up into the convection zone. In this way, a rising magnetic tube will
be extruded from the tachocline like the output of a cotton-candy machine. Such rising
helical tubes return the field to the convection zone in a process that is the surrogate
of evaporation in the magnetic weather cycle. A buoyant tube will ultimately protrude
through the solar surface to form a single spot or a strong tube may go beyond the surface
before falling back to produce a second, more diffuse region of magnetic disturbance.

Whatever the details of such a cycle, the general picture is that the tachocline has
a source of field from above to which it may return the field by this and other processes
(Spiegel and Weiss, 1980). If there is field stretching, much of it occurs as the helix is
twisted out of the tachocline. One form of such a process is in Cattaneo, et al., 1990. For
another vision of the role of vortices, see Parker, 1992.

I mention these images to motivate the construction of (what engineers call) a lumped
model of the solar cycle. At that coarse level, we ignore all the spatial detail implied by the
magnetic meteorology and simply introduce a parameter, 8 say, that measures the degree
of instability of the magnetic field in the tachocline. When fl > 0, the convection zone
is feeding the process abundantly and the magnetic buoyancy is able to extrude strong,
ordered fields. This could work in several ways.

There could simply be overstable magnetoconvection giving rise to oscillatory insta-
bility and 3 would measure something like the difference between a magnetic Rayleigh
number and its critical value (Childress and Spiegel, 1981). Or there could be a dynamo
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process, such as an a - w dynamo and 3 could be related to the dynamo number. In the
lumped model, we simply need a potentially unstable oscillator and may assume that its
operation is described by the normal form for the appropriate bifurcation, either a Hopf
bifurcation or a BLT bifurcation (Bogdanov-Lyapunov-Takens).

In the former, for fixed P, the complex amplitude of the oscillation is given by the
normal form for a Hopf bifurcation

A = (0 + i)A - IAI2 A. (3.1)

I have presumed for definiteness that the bifurcation is supercritical and have scaled the
coefficient in the nonlinear term equal to unity. If we were starting from first principles,
we should be able to relate the parameters to the physical properties of the model. For
now, I shall simply assume that ir/ws 11yrs and leave P free. If this is the oscillator that
describes the solar cycle at some level, some property of A should be the measure of the
toroidal field that is somehow forced to poke out of the sun and produce spots.

Alternatively, we might favor the more subtle BLT bifurcation (as, for some years, I
did). In a simplified version with linear friction, the real amplitude of the oscillation is
governed by

.A =6A - J - XA- . (3.2)

Under suitable conditions, (3.2) is well approximated by (3.1).
Both of these oscillators are periodic and will not by themselves adequately describe

the complications of the solar cycle. To make the oscillations aperiodic and intermittent
- in a word, chaotic - we allow / to vary slowly.

4. On/Off Intermittency

An oscillator like (3.2) becomes chaotic when its parameters are made to vary suitably
in time. We may impose this time dependence, or it may come about through a feedback
of the oscillation on the ambience that produces the effect characterized by the parameter.
For example, suppose that instead of having constant P3 in (3.2), we let it vary according
to

/= -c[ + a(A2 - 1)1, (4.1)

where a and c are real4ly parameters. A simple transformation turns (3.2) and (4.1) into
the Lorenz equations, originally devised in the study of thermal convection. So there is
little doubt that this is a system capable of producing aperiodic behavior for appropriate
values of the parameters.

This way of producing chaotic systems, by letting simple oscillators feed back on their
parameters (Marzec and Spiegel, 1980) may be used to generate equations for excitable
media, so perhaps in a case like this, we ought to refer to hysterical media. But I would
prefer to reserve this usage for the case of intermittency, for an an example of which,
suppose that in (3.2) /3 = Z - 2Y and that for Y and Z we have the equations

=_y3 + ZY-y-A 2  (4.2)
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S= -e[Z + a(y 2 + 2 1)]. (4.3)

When A = 0, equations (4.2) and (4.3) constitute the form of the Lorenz equations that I
just mentioned. So A = 0 is an invariant manifold of the fifth-order system that combines
these two equations with (3.2). Figure 4 (from Spiegel, 1981) shows A(t) for e - 0.1,
a = 6.5 and = 0.A125. This example of intermittent behavior with episodes of inactivity
in A recalls the inactive sun of Newton's time.

The term intermittency has been used in dynamical systems theory to describe al-
ternation between two modes of activity, as in the Pomeau-Manneviile (1980) theory. To
restore the meaning of the word as used by fluid dynamicists, the term on/off intermit-
tency has been proposed (Platt, et al., 1993a) to connote alternation between activity of a
certain kind and inactivity, as in Figure 4. The present interest of the model is that there
is continuous chaos in the invariant manifold, but the behavior of A alone shows on/off
intermittency. In this metaphor for the solar cycle, chaos in the Lorenz system represents
convection and A the solar activity. The merit of the model is that it captures the kind of
intermittency that the cycle manifests, but otherwise Figure 4 does not look very much like
Figure 2. One reason is that the effect of the solar activity (A) on the convection (Y, Z), is
pronounced and this makes for great irregularity. There must really be such coupling, but
it is likely to be weaker than in this model. We turn to a model which better captures the
nature of the solar cycle. In this one there is no feedback of the oscillator on the chaotic
driver.

In on/off intermittency, the intermittent behaviour is organized by an unstable invari-
ant manifold with stable and unstable manifolds coming into and out of it (Platt, et al.,
1993a). When the system moves away from the manifold, it bursts into activity until it is
brought back very close to the manifold along a stable manifold to hover inactively before
being sent out again. This may be seen as a chaotic relaxation oscillation, or a higher
dimensional version of homoclinic chaos, or as what is called bursting in neurophysiology
(Hindmarsh and Rose, 1984). The general idea is to make a potentially unstable oscilla-
tor whose stability parameter is the variable of an associated chaotic system. There are
many ways to set this up, so what we are isolating is not a particular model but a partic-
ular mechanism, on/off intermittency. Whether the oscillation really is generated by an
instability of the tachocline is a separate issue that is not central to the mathematical de-
scription. We do not even need the tachocline for the mathematical model to work, though
it is useful to think in such explicit terms. An interesting analysis of on/off intermittency
has recently been given by Heagy et al. (1993) and there are by now several discussions of
this kind of process (Yamda and Fujisaka, 1986-87; Hughes and Proctor, 1990; Pikovsky
and Grassberger, 1991). One key result is that, if this process is going on in the solar
cycle, we have no real hope of determining the dimension of the solar attractor by any of
the presently known means. It is not just that the data are inadequate for the purpose, as
has already been objected (Spiegel and Wolf, 1987), but that the on/off process imposes a
sort of indeterminism on dimension determination (Platt, et al., 1993a).

Here is a mathematical model for the solar cycle (Platt et al., 1993b) that has the
features I have outlined. We take the standard form (3.1) for the oscillator, which we couple
to a chaotic system by letting/3 . =8o(U -0Uo) where AD and 14 are fixed parameters. So
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(3.1) becomes
A = (U-Uo) + iw]A-IAIA. (4.4)

This says that the instability is strongly affected by U, which is determined by something
else in the system. In particular we gaerate U with this third order system:

OrrUU 3 -qUV (4.5)

6[ V-pU(U2 - 1)1 ,eqno(4.6)

where (r, q,p) are more parameters. Like (4.2), (4.5) is a modification of (3.2).
This time, the chaotic driver is a particular case of a model that was constructed to

clarify the physics of doubly diffusive convection (Moore and Spiegel, 1966). The system
(4.4)-(4.6) makes a fair model of the solar cycle, at least in the coarse grained sense. Of

course, we have to make some decision about what to compare to the sunspot number,
though this appears not to be crucial. In Figure 5 we see a plot of the square of ReA
vs. time showing several intermissions in activity. Within a long period of activity, the
cycle will be chaotic as we see clearly in Figure 6, a portion of Figure 5 with an enlarged
time scale. These results are robust and we do not need a lot of fine tuning of all these
parameters to get this behaviour.

In fact, the sunspot number variation is much more ragged than this model predicts,
as we see from in Figure 2. So there is evidence that more is happening than just an
intermittent oscillation such as is shown here. If the cycle does come from a deep layer,
we are seeing it through the convection zone, which will add its own direct input while
distorting the "true" signal. That can be modeled too (Platt et aL, 1993b) and, when
such effects are included, the qualitative agreement seems (to us) very good. But I paw
over such fine points of the cycle added by the convection zone itself in the belief that they
are incidental.

5. Solar Activity Waves

A plot showing the latitudes of vigorous sunspot activity vs. time looks like a row of
butterflies. This so-called Maunder butterfly diagram is a space-time plot of propagation
of solar activity. Lines along the activity maxima are world lines of motion toward the
equator. But what is moving? The most likely prospect is that we are seeing some kind of
wave motion and, in one version, these are dynamo waves (Parker, 1979). The idea I wish
to describe next is that the the butterfly diagram represents the propagation of solitary
waves (Proctor and Spiegel, 1991).

If an oscillation arises in a thin layer like the thermocline, we might expect to see
simple waves produced. Since the layer is thin, there should be a dense spectrum of
allowed wavenumbers. If they are dense enough, there is effectively a continuum of them.
A packet of such waves could have a solitary wave as envelope that would make a nice
descriptor of the activity band in latitude. The generic form of the propagation equation
would be the same for any simple overstability. The idea is to discuss what kind of butterfly
diagram such an equation predicts without worrying about the instability mechanism itself.
There are in fact several possible instabilities, including magneto-convective overstability,
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instability caused by the vertical shear of the tachocline or instability of a dynamo in
the tachocline, but they would have a common mathematical description in the present
coarse-grained discussion.

The amplitude equation for the Hopf bifurcation is based on a model in which one
mode has, in linear theory, a time dependence like expCpt + iw4) with 1Ij small, and all
the other modes are rapidly damped. If there is just one mode with small 1,01, its complex
amplitude, A, evolves according to (3.1). If the seat of the instability is a thin layer like
the tachodline, there can be a band of modes with smallfl. But now/ 3is a function of the
wavenumber along the channel, k, and such modes can propagate.

To describe the nonlinear development of the instability, we construct a packet of waves
in which A depends on k. If the system is axisymmetric in the large, we need consider
only a one-dimensional case. We factor out the carrier frequency and wavenumber defined
as those of the most unstable mode, and we characterize the packet by t(z, t), the Fourier
transform of A. The packet's envelope is described by %P giving the amplitudes of the
disturbance in space and time of the monochromatic waves with individual amplitudes
A(k, t). For example, A(k, t) could be the amplitude of a simple dynamo wave (Parker,
1979).

On general grounds, we expect the equation for IQ to be the complex Ginzburg-Landau
equation, which is like (3.1), but with spatial derivatives as well. Strictly speaking, the
governing equations are two coupled Ginzburg-Landau equations, one for each direction.
Though we know how to write these down (Bretherton and Spiegel, 1983), we do not as
yet have solutions relevant to the solar case, so I shall discuss only the single G-L equation
here (Manneville, 1990). The reason for the limited progress is that there is a more serious
complication that has to be dealt with first, one that Proctor and I (1991) have so far
treated in a phenomenological way. This is the variation of underlying conditions, such as
local stability, with latitude in the sun.

In the phenomenological view, the magnetic rain probably varies with latitude, and
certainly the shear in the tachocline does. This inhomogeneity should induce a drift mode
into the problem in addition to the one we are already omitting. However, we have so
far left out this extra mode and have attempted to make amends by putting a positional
dependence into the coefficients in the G-L equation. As the correct positional dependences
are as yet unknowable, we have used simple forms for it. This parameterization will have
to serve until we have a better understanding of the underlying variations in tachocline
structure.

In the wave packet, frequencies and growth rates depend on the wave number in linear
theory. We treat only situations where the width of the packet is small, as measured by
some small parameter, e. Linear theory provides a group velocity co that we use to provide
a basic reference frame. The peak of the packet is nearly stationary in the frame with
coordinate ý = x - cot. The form of the equation, when we choose units to minimize the
number of parameters, is

at,@ - C(t)a p - (e + i)82 + (v - j)l'I f [(,) + iW(,)]p. (5.1)

Here we have allowed for a dependence of the stability parameter, P, and of the linear
frequency, w, on the location of the solitary wave. The parameter c(t) is a local drift speed
with respect to the preferred frame.
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We assume that the instability is weak and write() ep(t). When e - 0, (5.1)
reduces to the cubic Sdu-cedinger equation, which admits a soliton solution that we may
write as

I (x, t) = R. e'€'•O, (5.2)

where
R(z, t) - r2 [ch[R(x - zo)I, (5.3)

and

e(,0 = u() - ZO) + J(U2 + R )dt. (5.4)

This soliton contains two arbitrary parameters, R and U, with z - 2Ut. The presence of
arbitrary parameters is related to symmetry groups of the nonlinear Schrcedinger equation.

The soliton, for all its remarkable stability, is a rather dull object when left to itself.
When we introduce dissipation and instability into the system, a richer behavior arises. The
arbitrariness of the parameters permits us to accommodate the dissipation and instability
terms that come in when e 0 0. For small e, we let both R and U be functions of et.
Then the methods of singular perturbation theory lead to equations of motion for the
parameters. These equations form a dynamical system that control the behaviour of the
solitary wave, much as a mind does for a person. In this way, the otherwise mindless
soliton is provided with a rather simple mind in the case of the standard complex G-L
equation that goes right to a fixed point. However, that situation is enriched when the
domain is large enough to allow instabilities that produce other solitary waves (Bretherton
and Spiegel, 1983).

In the solar case, when the parameters depend on position, even a single activity wave
shows a certain amount of interesting behaviour. The theory for c # 0 shows that when the
amplitude and position of the solitary waves depend on et, (5.2)-(5.4) represent a solution
of (5.1) provided that these equations are satisfied:

A---2R[p(t) - r(t) - U2] - 2(1 + 4m)R 2  (5.5)

U = u[2x() - ! le] + A(C) (5.6)
S(5.7)

2 =u- CID, (5.7)
where r = dc/dc and A - dw/de (Proctor and Spiegel, 1991).

In modeling the dependences of the given quantities on latitude, we need to look at
the structure of the tachocline. The helioseismological studies suggest that the rotation
in the solar interior is the same as the surface rotation at somewhere around 3,5 latitude.
The model (Spiegel and Zahn, 1992) agrees with this and predicts that the vertical shear
has a minimum at this latitude. Since we expect the shear to drive instability in a dynamo,
either directly or indirectly, we represent this either as a quadratic dependence over a whole
hemisphere or, more crudely, as a linear dependence over the zone of sunspot activity. In
either case the qualitative results are similar and, for the linear case, with i proportional
to f, we get results like those in Figure 7 (Proctor and Spiegel, 1991). The results are for a
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single hemisphere and thus represent a series of one-winged butterflies. To this extent, the
model is satisfactory. It suggests that at the end of a cycle the activity wave survives and
returns rapidly to midlatitudes maitaining very small amplitude, there to begin another
trip to the equator.

The observations reveal that a new cycle begins in midlatitudes before the previous
cycle ends near the equator. This is not seen in Figure 7. On the other hand, that picture
is based on the solitary wave being a rigid object described as a point. In fact, the real
reflection process is a more complicated affair lasting about the time it takes the wave
to travel its own width. This seems about right for the overlap period of the two cycles.
Moreover, we ought to see some of the spots associated with the return trip of the activity
wave to the midlatitudes, so part of the overlap may be on that account.

Another feature of Figure 7 that is not in good agreement with the facts is that the
maximum of activity occurs virtually at the beginning of the cycle. This may be a result
of the form adopted for the latitude dependence of the parameters. If this model turns
out to be on the right track, the phase of maximum activity may ultimately permit us to
study the latitude variation of the tachocline structure.

The cycle shown in Figure 7 is periodic, but this is not surprising at this stage of
the story. In the next level of development, when we include two solitary waves in the
description, one for each hemisphere, we obtain a coupled pair of sets of equations like (5.6)-
(5.7). This leads to chaos and north-south asymmetry, more in accord with observation.
However, Proctor and I are not yet sure about coupling terms in this description of both
hemispheres, so I do not give details here. In fact the major cause of aperiodicity is likely
to come from input variations from the convection zone, expressed once again by a chaotic
origin of P in (5.1). This will produce spatio-temporal on/off intermittency of the kind we
see in the sun and the next step should be to include this mechanism in the theory.

6. Final Remarks

Since we do not have a theory of turbulence, it is not possible to make a fully deduc-
tive theory of the solar cycle on account of the involvement of the solar convection zone.
Nevertheless, we can hope to make phenomenological models of increasing precision. In
the work described here, there are two parallel developments along those lines, one physical
and one mathematical. Both are frankly qualitative, but in the mathematical case, this
may be a desirable feat-e

The mathematical models discussed here are aimed at showing how the apparently
complicated spatio-temporal behavior of the solar cycle can be reasonably well reproduced
with relatively simple equations. Thbu encourages us to attack the physical model in a more
detailed way, despite our inability to cope with the turbulence problem. The equations
describe a simple oscillatory instability fed by an aperiodic process. The sun provides the
necessary ingredients for all the processes that can be read from the model equations.

The solar tachocline, the rotational transition layer between the convection zone and
the deep interior, offers a natural site in which to unfold our scenario. Fed from above by
plunging plumes it can entrain fluid carrying tanted magnetic field and stretch the field
out into some more orderly confiT. .-tion only to expel it in discrete structures. We have
several promising mechanisms to choose from before setting out to follow one through to a
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quantitative model. But before embarking on such daunting calculations, we need to see a
way through some of the unsolved problems. The main ones seem to me to be concerned
with time dependence.

The solar differential rotation appears to vary on the time scale of the activity cycle
(Howard and LaBonte, 1980). We do not know whether this is incidental or fund.
In the picture I am describing, the dynamical coupling between the tachocine and the
convection zone is strengthened when the spot fields link them. This time-dependent
interaction could modify the structure of the tachocline and produce large-scale motions
like azimuthal rolls. Whether such effects are fundamental or just secondary is not yet
clear. Similarly, I do not know whether the polarity reversals that occur with the solar
cycle point to some deep process or represent some superficial feature of the cycle. The
true physical nature of this behavior is not reliably known and the mathematical descriptor
in the in the mathematical models I have discussed has not been identified.

Another question that has to be faced at some stage is the quantitative determination
of properties of the cycle such as the eleven-year time scale. Eleven years is very long
compared to the travel time of any of the obvious waves across the tachocline, which is
about a quarter of an hour for sound waves. On the other hand, eleven years is quite short
compared to the conventional Kelvin-Helmholz, or thermal, time of the tachocline of a
million years, or so. The changes that the solar cycle must work in the tachocline would
seem to encounter a sort of fluid-dynamical impedance mismatch between the driving
frequency and these response times of the tachocline. However, if there is a degeneracy in
the determination of the frequency of the cycle, perhaps this degeneracy is lifted by the
requirement that the tachocline can adjust easily to the driving by the activity process.
In fact, the hydrostatic adjustment time of the tachocline is approximately the geometric
mean of the acoustic travel time and the thermal time (Spiegel, 1987), which is of the
order of years. So it may be that the period of the cycle is less of a clue to the actual
process than it is to the structure of the tachocline. If this is true, we have another means
of estimating its thickness. I offer this as an example of a feature of the cycle that might
be fundamental but might just as well be secondary.

There are many places to seek further clues to the processes discussed such as other
solar type stars (Belvedere, 1991) and turbulent disks that might show solar type processes.
Indeed there are hot stars that seem to show activity re-,embbing that of the sun (Casinelli,
1985). It difficult to know which phenomena are central to the sunspot cycle and the
decision is usually subjective. The models I have described are rooted in elementary
mathematical processes that seem robust. They suggest a vision of the solar activity
process that differs from the conventional solar dynamo and avoid some of the difficulties
solar dynamo theory faces. I am sure that the present models will also face numerous
problems as they are elaborated and I look forward to learning what these will be.
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FIGURE CAPTIONS

I. Sunspots in the seventeenth century from HeB(1911), courtesy of E.L. Schuckdng.
2. The yearly mean sunspot number as a fumction of time with the period of the

Maunder minimum (cm. 1650-1720) not shown.
3. The structure of the solar tadwoie from the observed (Morrow 1988) and theoreti-

cal viewpoints (Spiegel and &din, 1992). The tachoclinie thidmcse in the lower (theoretical)
figure is arbitrary.

4. On/of intermittency from equs. (3.2), (4.2) and (4.3) (after Spiegel, 1981). Even
when the oscillator is inactive, there is chaos in the invariant manifold.

5. The activity predicted by the (4.4)-(4.6) for r = 0.7, q = 0, p = -0.5, fo = 1,
Uo = -0.15, 6 = 0.03.

6. A blowup of a portion of Figure 5.
7. The dynamics of a single-winged butterfly according to (5.5)-(5.7) (after Proctor

and Spiegel, 1991).
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